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This is the second of a series of papers discussing the possibility of separating and accurately calculating
electrostatic and polarization energies in simulations using classical force fields. A method is described for
determining a set of effective distributed multipoles which have significantly improved convergence properties
in evaluating the electrostatic interaction energy between molecules. These fitted multipoles are derived to
reproduce the electrostatic potential and its derivatives as calculated from a full distributed multipole analysis.
The method is based on previous work on the determination of multipole-fitted charges (Ferenczy, G. G.J.
Comput. Chem. 1991, 12, 913; Chipot et al.J. Phys. Chem. 1993, 97, 6628) and does not involve the use of
a numerical grid. In applications on model systems, fitted charges and dipoles are able to reproduce both the
interaction energy and the optimized geometry obtained from a full distributed multipole analysis. Potential-
derived charges, however, result in significant errors when the molecules are in close proximity to each
other. The method was also used to investigate a possible reason why norepinephrine has a higher affinity
than epinephrine in theâ1-adrenergic receptor subtype, while the specificity is reversed in theâ2- andâ3-
adrenergic receptor subtypes. This new method offers much potential in the development of new force fields,
particularly those involving polarization through induced dipoles, because only fitted charges and dipoles are
required to reproduce quantitatively electrostatic interactions.

Introduction

The design of molecular force fields is complicated by the
need to balance the conflicting requirements of accuracy and
ease of computation while retaining desirable properties such
as transferability. Practical force fields usually employ atomic
charges for ease of computation. However, a more in-depth
consideration of the underlying physics would suggest that
distributed multipolar expansions up to quadrupole are necessary
to give an adequate description of intermolecular interactions.
Here we present work on effective multipoles which have
significantly improved convergence properties over distributed
multipole expansions. This therefore represents a step toward
reconciling these two disparate approaches within a single
practical framework.
Since these new effective multipoles (typically charges plus

dipoles) are derived from the wave function expressed as a
distributed multipole analysis1 (DMA) by a fitting procedure,
they have the desirable property of reproducing the electrostatic
component of an energy decomposition scheme. (This may not
necessarily be the case if the force field parameters are derived
from experimental data by a fitting process.) The key role
played by electrostatics has been illustrated by DMA-based
studies on the equilibrium geometries of van der Waals
complexes.2-4 In many cases, electrostatics was soley respon-
sible for a correct description of the orientation. Indeed, various
other multicenter multipolar expansions have been proposed5-7

in an attempt to give an improved electrostatic representation
of the wave function. Unfortunately, these invariably require
expansions at least up to the quadrupole level to give good
results.7,8 Consequently, the use of distributed multipoles in

molecular dynamics studies is usually too expensive in terms
of CPU time. Most force fields, therefore, use distributed charge
models for the evaluation of electrostatic interaction energies.
These charges can be chosen to include the effect of some higher
moments. Potential-derived charges9 and multipole-fitted
charges10-12 have this property,13 but they are still unable to
describe electrostatic interaction energies correctly.
In an attempt to achieve the accuracy of distributed multi-

poles, an extension of the multipole-fitting procedure has been
formulated to generate higher rank fitted moments. These fitted
moments have considerably improved convergence properties
since accurate electrostatic energies can be obtained using lower
rank multipoles than required for similar accuracy with a DMA.
In particular, it can be shown that multipole-fitted charges and
dipoles are sufficient for the correct description of intermolecular
electrostatic interactions of molecules in close proximity to each
other. This offers distinct advantages in force field development.
Firstly, it offers much improved accuracy at a reasonable cost.
Secondly, since the multipole-derived charges are more transfer-
able than potential-derived charges, similar advantages are to
be expected over potential-derived multipoles.14,15 Thirdly, both
electrostatics and polarization can be handled on an equal
footing, since polarization is normally treated through interac-
tions involving induced dipoles. Moreover, we will show that
the errors involved in ignoring dipoles and higher moments are
comparable to those involved in ignoring polarization.12,16 This
implies that advances must be made in both areas simultaneously
and our approach will facilitate this, particularly as many current
force fields already have code to handle dipole-dipole interac-
tions.
In the following sections, we outline the method and illustrate

its effectiveness through calculations on the interaction energy
between small molecules and also through calculations on the
interaction energy between two agonists and the key binding
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residues in the agonist binding site of a model of theâ-adren-
ergic receptor.

Methods

Calculation of Effective Multipoles. Effective multipoles
are effective in the sense that a set of multipoles of rankM,
obtained from a fitting procedure, approximates the effect of a
set of multipoles of rankN, obtained from a multipolar
expansion, withM < N. The derivation of effective multipoles
is an extension of our earlier fitting method for calculating
charges to reproduce the effect of DMA multipoles.10-12 Here
we present an extension of the method to derive a set of fitted
multipole moments, FMs, from a set of DMA multipoles
otherwise referred to as reference multipole moments, RMs.17

Since the FM set consists of lower rank moments than the RM
set, the replacement of the RM set by the FM set results in
faster evaluation of the electrostatic energy.
Let us suppose that we have a set of RM series and a set of

sites for the FMs. For a quantitative description of electrostatics,
a DMA up to rank 2-3 is considered necessary, but for the
present purposes moments up to rank 6-8 are more appropriate
as RM series. The rank of the FM series is considerably lower,
being 0 or 1 (that is, charges or charges plus dipoles). The
procedure to calculate the FMs is outlined below; a more
quantitative description is given in the Appendix. First we
choose a particular RM series and a set of sites for the FMs
which are within a sphere centered on the reference site. We
want to choose the fitted multipole moments, FMs, so that they
reproduce the effect of the RM series outside the sphere. This
is perfectly realized if the FMs create multipole moments with
respect to the reference site which are equal to the RMs. In
our method, a least squares-like equation is set up so that the
sum of the squares of the differences between the RMs and
moments created at the same site by the fitted moments is
minimal. Since the FMs are calculated using a fitting procedure,
the reproduction is approximate rather than exact. Nevertheless,
FMs reproducing the effect of the particular RM series can be
calculated. The same procedure is performed for all reference
series to obtain several sets of FMs. Since the site of an FM
series can be included into the fitting procedure of several RM
series, the final FM set is obtained as the sum of FMs calculated
in separate fits. (The limitations of the separate fitting to each
set of RMs are discussed in ref 11.) For example, in a hydrogen
fluoride molecule having an RM series and an FM series at
both atomic sites, an FM set is obtained for both atoms when
fitted to the hydrogen RM series. Another FM set is created
when fitted to the fluorine RM series. For both atoms, the final
FMs are the sums of the contributions obtained in the two fits.
The number of FM centers involved in the fit of an RM series

is determined by the radius of a sphere. A larger radius
increases the number of sites and thus improves the reproduction
of the RM series. On the other hand, the FMs reproduce the
effect of the RMs outside the sphere. Consequently, the radius
must not be larger than the separation of atoms in intermolecular
interactions. A radius of about 2 Å seems to be a reasonable
compromise. This corresponds to a value ofr incl = 0.0 Å (see
Figure 1 of ref 12.) The use of such a radius ensures that RMs
on an atom are fitted by multipoles centered on the atom itself,
on the nearest neighbors, and in some cases, also on the next
nearest neighbors. The use ofr incl ) 2.0 Å will generate FMs
on more atomic sites.
The effectiveness of the fit can be predicted by considering

that lower rank multipoles appear with considerably higher
weights in the fitting procedure (the weights,W, are given by
eq 8 in the Appendix), as illustrated by the data in Table 1.
Thus, the description of the lower moments exceeds that of the

higher moments. We can therefore expect that the fitting ofn
FMs results in a very good approximation to then lowest rank
reference moments.
As an example, let us consider an HF molecule with one

charge, one dipole, and two quadrupole and two octopole
moments on each atom. (The other dipole, quadrupole, and
octopole moments are not independent for symmetry reasons;
higher rank moments are presented in Table 2 but are not
discussed in the present analysis.) The calculation of the fitted
moments of two fitting procedures, one for each atomic
reference series. When only charges are fitted, then the charges
(two parameters, since there is one fitted charge on each atom)
calculated in the first fit effectively reproduce the charge and
the only independent dipole moment of the reference series on
one atom. The other pair of fitted charges calculated in the
second fit reproduce the charge and the dipole of the other
reference series (compare the RM column with the FM0 columns
in Table 2). In this way, two charges are calculated for each
atom. Fitted charges belonging to the same atom are summed
to give the final fitted charge. Likewise, fitted charges and
dipoles (four parameters on the two atoms) effectively reproduce
the charge, the only dipole, and the two independent quadrupole
moments of the reference series on one of the atoms (compare
the RM column with the OFM1 and CFM1 columns in Table
2). Indeed the OFM1 fitted octopoles are also in reasonable
agreement with the RMs. Thus, we can expect that the
interaction energy between HF molecules calculated with a set
of fitted charges approximates the energy calculated with a
DMA up to dipoles. Similarly, the interaction energy calculated
with a set of fitted charges and dipoles approximates the energy
calculated with a DMA up to quadrupoles.
In large molecules it is less straightforward to predict the

goodness of the fit, but we can make an estimate in the following
way. Let us supporse that both the RMs and the FMs are at
atomic sites and that when fitting to an RM series, the number
of centers of FMs,p, is between 2 and 5. (This corresponds to
the assumption that the fitting involves the atom on which the
RM series is based, its nearest neighbors, and in some cases,
e.g. for an H atom or a carbonyl O, the next nearest neighbors.)
Since the number of spherical multipole moments of an RM
up to rankN is (N+ 1)2 on one center, then usingp FM centers
and fitted moments up to rankM, there arep(M + 1)2

independent parameters to reproduce the (N + 1)2 lowest
reference moments. This argument was used to obtain the data
presented in Table 3. These data suggest that with an appropri-
ate number of FM centers, fitted charges approximate the effect
of a DMA up to dipoles, while fitted charges plus dipoles can
replace a DMA up to quadrupoles or even to octopoles. This
conclusion is in line with the results presented in Tables 4-13
and illustrates the usefulness of a fitted charge+ dipole set in
calculating electrostatic interaction energies. It would therefore
appear that larger molecules may be described better than small
molecules because of the increase in the proportion of adjacent

TABLE 1: Comparison of the Weights,WlMltmMm′MmtpMpt(r1,r2),
of the Reference Multipole Moments in Eq 8. All Indices
Are 0, Except lM, the Rank of the Reference Moments,
Whose Value Is Shown in the First Column

lM

r1 ) 3.2 Å
r2 ) 5.0 Å
weight

r1 ) 3.2 Å
r2 ) 10.0 Å
weight

0 3.4015× 10+0 1.2850× 10+1

1 1.9844× 10-2 3.7483× 10-2

2 2.2225× 10-4 2.9160× 10-4

3 3.1540× 10-6 3.5215× 10-6

4 5.1320× 10-8 5.3662× 10-8

5 9.1734× 10-10 9.3413× 10-10

6 1.7555× 10-11 1.7686× 10-11
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sites. Indeed, because the fitting procedure is size-independent,
the method should be appropriate for any molecule for which
an accurate DMA can be obtained. (Whether this is true for
MEP-derived multipoles14,15remains to be seen, since the related
MEP-derived charges are known to exhibit problems on buried

atoms because there is no link between the MEP grid point and
the atomic center contributing to its potential18-20.)
At this point, it is worth stressing again that the FM centers

involved in the fit are limited to those centers within a sphere
of a given radius. Since the effect of the FMs approximates
that of the RMs outside the sphere only, the extension of the
radius of the sphere pushes apart the smallest intermolecular
separation for which the replacement of the RMs by FMs is
possible.
It is important to realize that the calculation of the interaction

energy of fitted moments requires the inclusion of all terms
containing the interaction of any of the fitted moments. This
means that when fitted charges and dipoles are used, then the
charge-charge, charge-dipole, and dipole-dipole inter-
actions need to be evaluated. On the other hand, the inter-
action energy of DMA moments is an expansion according the

TABLE 2: Reference Multipole Moments (RM) and Moments Created by the Fitted Moments at the Site of the Reference
Moments: FM0

app Is Obtained by Fitting Charges; OFM1
app Is Obtained by a Fit of Both Charges and Dipoles in an Overall

Fitting Procedure; CFM1
app Is Obtained by a Fit of Charges and Dipoles in a Cumulative Fitting Procedure

F atom H atommultipole
index (lmc)a RM FM0 OFM1 CFM1 RM FM0 OFM1 CFM1

00 -0.5103 -0.5103 -0.5103 -0.5103 0.5103 0.5103 0.5103 0.5103
11c -0.1320 -0.1275 -0.1320 -0.1320 0.0278 0.0266 0.0278 0.0278
20 -0.6536 0.1105 -0.6505 -0.5304 -0.0218 0.0231 -0.0218 -0.0203
22c 0.1132 -0.1914 0.1127 0.0919 0.0377 -0.0400 0.0377 0.0352
31c 0.1646 0.2345 0.1303 -0.2861 0.0388 -0.0490 0.0380 0.0891
33c -0.2125 -0.3027 -0.1683 0.3693 -0.0501 0.0633 -0.0491 -0.1151
40 -0.0834 -0.2488 -0.4231 0.4877 0.0232 -0.0520 0.0316 0.1435
42c 0.1244 0.3709 0.6308 -0.7271 -0.0345 0.0775 -0.0471 -0.0345
44c -0.1645 -0.1645 -0.8344 0.9618 0.0457 -0.1025 0.0623 0.2829

aMultipole moments are labeled according to ref 28.

TABLE 3: Predicted Reproduction of RMs as a Function
of the Number and Maximum Rank of FMsa

number of RMs
reproduced using fitted:number of

fitted centers charges charges and dipoles

2 2 charge+ 8 dipole+
3 3 charge+ 12 quadrupole+
4 4 dipole 16 octopole
5 5 dipole+ 20 octopole+

a Entries in the second and fourth columns are the number of
reproduced RMs and are calculated asp(M + 1)2, wherep is the number
of centers (first column) andM is the maximum rank of FMs (in this
case 0 and 1, respectively). The name of the multipole moment beside
the numbers refers to the highest rank reproduced RM. Thus, “dipole”
appears when the charge and three dipoles (4 moments) are reproduced,
and “charge+” appears when the number of the parameters is 2 or 3,
i.e. more than required for reproducing the charge (1 parameter) and
less than required for charge+dipole (4 parameters).

TABLE 4: Electrostatic Interaction Energy Calculated
Using Various Multipoles for an HF Dimer Near to Its
Equilibrium Geometry (Figure 1): All Quantities Are in
Atomic Units

maximum
multipole rank DMAa OFMb CFMc ESPd

0 -0.006 418 -0.005 036 -0.005 036 -0.004 947
1 -0.005 896 -0.006 529 -0.006 378
2 -0.006 658
3 -0.006 731
4 -0.006 786

aMultipole moments are calculated from a distributed multipole
analysis.bMultipole moments are calculated from an overall fitting
procedure.cMultipole moments are calculated from a cumulative fitting
procedure.dCharges are fitted to electrostatic potentials.

TABLE 5: Electrostatic Interaction Energy Calculated
Using Various Multipoles for a Water Dimer Near to Its
Equilibrium Geometry (Figure 1): All Quantities Are in
Atomic Units

maximum
multipole rank DMAa OFMb CFMc ESPd

0 -0.009 177 -0.008 147 -0.008 147 -0.008 271
1 -0.008 826 -0.009 498 -0.009 678
2 -0.010 161
3 -0.010 305
4 -0.010 299

aMultipole moments are calculated from a distributed multipole
analysis.bMultipole moments are calculated from an overall fitting
procedure.cMultipole moments are calculated from a cumulative fitting
procedure.dCharges are fitted to electrostatic potentials.

TABLE 6: Electrostatic Interaction Energy Calculated
Using Various Multipoles for Antiparallel HF Dimer (Figure
2a) at Several Intermolecular Separations (R): All
Quantities Are in Atomic Units

maximum
multipole rank DMAa OFMb CFMc ESPd

R) 5
0 -0.005 742 -0.004 506 -0.004 506 -0.004 427
1 -0.004 524 -0.004 768 -0.004 372
2 -0.004 610
3 -0.004 792
4 -0.004 824
5 -0.004 820

R) 6
0 -0.003 408 -0.002 674 -0.002 674 -0.002 627
1 -0.002 675 -0.002 773 -0.002 611
2 -0.002 709
3 -0.002 791
4 -0.002 801
5 -0.002 799

R) 7
0 -0.002 180 -0.001 710 -0.001 710 -0.001 680
1 -0.001 707 -0.001 751 -0.001 677
2 -0.001 723
3 -0.001 763
4 -0.001 766
5 -0.001 766

R) 8
0 -0.001 475 -0.001 158 -0.001 158 -0.001 137
1 -0.001 154 -0.001 175 -0.001 138
2 -0.001 162
3 -0.001 183
4 -0.001 184
5 -0.001 184

aMultipole moments are calculated from a distributed multipole
analysis.bMultipole moments are calculated from an overall fitting
procedure.cMultipole moments are calculated from a cumulative fitting
procedure.dCharges are fitted to electrostatic potentials.
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intersite separationR, which requires truncation at a given power
of R. This means that the energy up toR-3 requires the
evaluation of the charge-quadrupoles terms in addition to those
listed above. Nevertheless, for the model systems the inter-
action energies of DMA multipoles presented below are
calculated with a truncation according to the multipole moment
ranks in order to be consistent with the calculations using fitted
moments.
Overall WersusCumulative Fitting. The fitting procedure

considered so far includes the calculation of fitted moments of
all ranks in one step. Thus, fitted charges and dipoles designed
to reproduce a given series of reference moments are obtained
as the solution of one least squares-like system of equations.
Multipole moments obtained from such an overall fitting
procedure will be referred to as OFMs; the OFMs share some
similarities to the fitted moments of Williams.14 An alternative
approach involves obtaining fitted charges as the first step. These
fitted charges create multipole moments at the reference site.
The difference between the reference moments and those created
by the fitted charges is then fitted by a set of dipoles. This
cumulative fitting procedure can be continued to higher ranks,
and the resulting moments will be referred to as CFMs; the
CFMs share some similarities to the fitted moments of Kong.15

The goodness of a cumulative fit can be qualitatively predicted
in the same way as that of an overall fit, as described in the
preceding section. Thus, in the case of HF, charges (two
parameters) fitted in the first step effectively reproduce the
reference charge and dipole (two parameters), while dipoles (two
parameters) fitted in the second step effectively reproduce the
reference quadrupoles (two parameters). Obviously, an overall

fit is more flexible and is expected to result in a better
description of the reference moments than a cumulative fit, as
can be seen by comparing the OFM1 and CFM1 columns in
Table 2. However, cumulative moments have advantages which
will be discussed later.
Electrostatic Interaction Energies. Small Model Systems.

Calculations on small model systems were undertaken to
investigate the convergence of the interaction energy as a
function of the DMA rank and to investigate whether DMA
multipoles may be replaced by fitted ones. Three types of
calculations were performed. The interaction energies between
molecules in close proximity were evaluated with different rank
DMA and fitted multipoles to investigate the effect of truncation.
Then, similar calculations at several intermolecular separations

TABLE 7: Electrostatic Interaction Energy Calculated
Using Various Multipoles for C2H2···HCN (Figure 2b) at
Several Intermolecular Separations (R): All Quantities Are
in Atomic Units

maximum
multipole rank DMAa OFMb CFMc ESPd

R) 4
0 -0.003 745 -0.004 393 -0.004 393 -0.006 042
1 -0.010 762 -0.007 494 -0.007 039
2 -0.006 877
3 -0.007 500
4 -0.007 492

R) 5
0 -0.002 184 -0.002 532 -0.002 532 -0.003 411
1 -0.005 813 -0.003 920 -0.003 798
2 -0.003 719
3 -0.003 908
4 -0.003 891

R) 6
0 -0.001 354 -0.001 555 -0.001 555 -0.002 057
1 -0.003 404 -0.002 267 -0.002 226
2 -0.002 191
3 -0.002 259
4 -0.002 249

R) 7
0 -0.000 882 -0.001 005 -0.001 005 -0.001 310
1 -0.002 121 -0.001 407 -0.001 391
2 -0.001 375
3 -0.001 403
4 -0.001 398

R) 8
0 -0.000 598 -0.000 677 -0.000 677 -0.000 872
1 -0.001 388 -0.000 921 -0.000 914
2 -0.000 906
3 -0.000 919
4 -0.000 916

aMultipole moments are calculated from a distributed multipole
analysis.bMultipole moments are calculated from an overall fitting
procedure.cMultipole moments are calculated from a cumulative fitting
procedure.dCharges are fitted to electrostatic potentials.

TABLE 8: Electrostatic Interaction Energy Calculated
Using Various Multipoles for C6H6···NH3 (Figure 2c) at
Several Intermolecular Separations (R): All Quantities Are
in Atomic Units

maximum
multipole rank DMAa OFMb CFMc ESPd

R) 6
0 -0.002 201 -0.002 703 -0.002 703 -0.003 628
1 -0.001 298 -0.002 180 -0.002 241
2 -0.002 022
3 -0.002 572
4 -0.002 063
5 -0.001 738
6 -0.001 831
7 -0.002 028
8 -0.002 090

R) 7
0 -0.001 387 -0.001 703 -0.001 703 -0.002 286
1 -0.001 188 -0.001 725 -0.001 547
2 -0.001 570
3 -0.001 976
4 -0.001 734
5 -0.001 636
6 -0.001 690
7 -0.001 727
8 -0.001 720

R) 8
0 -0.000 886 -0.001 087 -0.001 087 -0.001 459
1 -0.000 924 -0.001 232 -0.001 052
2 -0.001 136
3 -0.001 351
4 -0.001 236
5 -0.001 203
6 -0.001 223
7 -0.001 229
8 -0.001 225

aMultipole moments are calculated from a distributed multipole
analysis.bMultipole moments are calculated from an overall fitting
procedure.cMultipole moments are calculated from a cumulative fitting
procedure.dCharges are fitted to electrostatic potentials.

TABLE 9: Structure and Energy of the HF Dimer in the
Minimum Energy Configuration As Obtained with Different
Multipoles: The Angles Are Defined in Figure 1; Energies
are in Atomic Units

multipole angles

type max rank Θ1 Θ2 energy

DMA a 2 122° 186° -0.008 536
OFMb 0 180° 180° -0.009 228
OFMb 1 118° 188° -0.008 191
CFMc 0 180° 180° -0.009 228
CFMc 1 121° 188° -0.008 518
ESPd 0 180° 180° -0.009 066
aMultipole moments are calculated from a distributed multipole

analysis.bMultipole moments are calculated from an overall fitting
procedure.cMultipole moments are calculated from a cumulative fitting
procedure.dCharges are fitted to electrostatic potentials.
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were performed to study how the importance of different rank
moments varies with distance. Finally, the minimum energy
configurations of some bimolecular systems were calculated,
again with different rank DMA and fitted moments. Interaction
energies were calculated using both OFMs and CFMs. In
addition, interaction energies calculated with potential-derived
(ESP) charges are presented; since ESP charges are widely used
in classical force fields, a comparison of the performances of
ESP charges with fitted moments is important in assessing the
usefulness of the latter. In all cases, the wave functions were
calculated with a 6-31G* basis set at their 6-31G* optimized
geometry with the CADPAC21 program. The interaction
energies were calculated with the ORIENT program.22 This
program is able to evaluate the interaction energy of multipole

sets with contributions up toR-5. The program was modified
in order to make it possible to evaluate contributions of any
order.
Applications to Large Systems: Theâ-Adrenergic Receptor.

Calculations on the essential agonist binding residues of amodel
of the heptahelicalâ2-adrenergic receptor (â2-AR) were carried
out (a) to assess the potential performance of the fitted moments
in real applications and (b) to investigate the molecular origin
of the subtype specificity of epinephrine and norepinephrine in
theâ1-, â2-, andâ3-ARs. Molecular modeling and site-directed
mutagenesis studies23 have identified113Asp on helix three,
204Ser and207Ser on helix five,286Trp and290Phe on helix six,
and311Leu on helix seven as key residues in agonist binding.
Consequently, these residues plus the docked agonist (epineph-
rine or norepinephrine) were taken from the minimized model
receptor structure23,24 and blocked with suitable end groups
(either CH3NH- or-COCH3) where appropriate, and the DMA
was determined using the CADPAC program with a 6-31G*
basis set as above. The interaction energies were calculated
using ORIENT.

Results and Discussion

Figure 1 and Tables 4 and 5 present the results for the HF
dimer and the water dimer, respectively, near their equilibrium
geometries. The four atoms of the HF dimer are in the same
plane, while the planes of the water molecules are orthogonal
to one another. Similar conclusions can be drawn from the
interaction energies of both dimers. The inclusion of DMA

TABLE 10: Electrostatic Interaction Energy Calculated
Using Various Multipoles for H2O···HCl at Θ1 ) 37° and Θ2
) 175° (Minimum Energy Configuration of DMA
Octopoles): The Angles Are Defined in Figure 3; Energies
Are in Atomic Units

maximum
multipole rank DMAa OFMb CFMc ESPd

0 -0.006 548 -0.008 405 -0.008 405 -0.008 973
1 -0.006 901 -0.009 662 -0.012 807
2 -0.012 421 -0.011 388 -0.009 716
3 -0.010 818
4 -0.011 750
5 -0.011 320
6 -0.011 490
7 -0.011 428
8 -0.011 447

aMultipole moments are calculated from a distributed multipole
analysis.bMultipole moments are calculated from an overall fitting
procedure.cMultipole moments are calculated from a cumulative fitting
procedure.dCharges are fitted to electrostatic potentials.

TABLE 11: Structure and the Energy of the H2O···HCl
System in the Minimum Energy Configuration As Obtained
with Different Multipoles: The Angles Are Defined in
Figure 3; Energies Are in Atomic Units

multipole angles

type max rank Θ1 Θ2 energy

DMA a 2 37° 179° -0.012 542
DMA a 3 37° 175° -0.010 818
OFMb 0 0° 180° -0.008 949
OFMb 1 20° 178° -0.009 657
OFMb 2 37° 178° -0.011 433
CFMc 0 0° 180° -0.008 949
CFMc 1 0° 180° -0.013 138
CFMc 1 18° 178° -0.013 071e
CFMc 2 19° 178° -0.009 809
ESPd 0 0° 180° -0.009 553
aMultipole moments are calculated from a distributed multipole

analysis.bMultipole moments are calculated from an overall fitting
procedure.cMultipole moments are calculated from a cumulative fitting
procedure.dCharges are fitted to electrostatic potentials.e Local mini-
mum.

TABLE 12: Total Ligand Receptor Interaction Energies, in
kJ mol-1: Unless Otherwise Stated,r incl ) 0.0 Å Was Used

system DMAa OFMb OFMd CFMc chargee chargef

NOR-â2, â3-AR -615.0 -614.4 -614.9 -609.5 -663.7 -659.7
EPI-â2, â3-AR -503.3 -499.8 -499.9 -494.8 -528.3 -527.1
NOR-â1-AR -638.2 -641.4 -642.5 -631.9 -686.2 -680.8
EPI-â1-AR -499.5 -491.7 -495.0 -483.6 -509.2 -509.5

aMultipole moments are from a DMA at the hexadecapole level.
bCharges plus dipoles are calculated from an overall fitting procedure.
cCharges plus dipoles are calculated from a cumulative fitting
procedure.dCharges plus dipoles were evaluated usingr incl ) 2.0 Å.
eMultipoles fitted charges.f Multipoles fitted charges evaluated using
r incl ) 2.0 Å.

TABLE 13: Interaction Energy/kJ mol -1 between the
Agonist (Norepinephrine, NOR, or Epinephrine, EPI) and
311Leu and 311Phe: The Residue Number Given Is for the
â2-AR

system DMAa OFMb OFMd CFMc chargee chargef

NOR-311Leu -98.2 -99.9 -98.8 -102.6 -107.4 -106.1
EPI-311Leu -99.7 -100.6 -100.2 -105.0 -113.9 -113.8
NOR-311Phe -119.5 -121.6 -122.8 -120.5 -120.2 -119.9
EPI-311Phe -113.6 -110.8 -112.9 -112.2 -124.1 -123.2

aMultipole moments are from a DMA at the hexadecapole level.
bCharges plus dipoles are calculated from an overall fitting procedure.
cCharges plus dipoles are calculated from a cumulative fitting
procedure.dCharges plus dipoles were evaluated usingr incl ) 2.0 Å.
eMultipoles fitted charges.f Multipoles fitted charges evaluated using
r incl ) 2.0 Å.

Figure 1. Schematic structures and the interaction energies of the HF
dimer and water dimer calculated with various multipole sets.0
represents points calculated with DMA multipoles, * represents points
calculated with fitted multipoles,+ represents points calculated with
CFMs, andO represents points calculated using ESP charges.
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quadrupoles represents a significant improvement in reproducing
the interaction energy. As for FMs, charges give poor results,
while charges plus dipoles are considerably better. The poor
energy of fitted charges is due to the fact that for both dimers
the DMA charges give energies nearer to the converged limit
than does the DMA up to dipoles. Thus fitted charges, which
are designed to simulate a DMA up to dipoles, give energies
worse than DMA charges or fitted charges plus dipoles. ESP
charges give results very close to those of multipole-fitted
charges. The OFM and CFM energies are also very similar.
Figure 2 and Tables 6, 7, and 8 contain energies for the

antiparallel HF dimer and the C2H2···HCN and C6H6···NH3

systems, respectively. The same calculations were performed

as before, except that several different intermolecular separations
were considered. For the HF dimer (Table 6, Figure 2a), the
energies of DMA multipoles show significant improvement
when dipoles are included and modest improvement when
quadrupoles and octopoles are included. Consequently, fitted
charges (effectively reproducing DMA multipoles up to dipoles)
reasonably approximate the converged DMA results. ESP
charges and multipole-fitted charges perform similarly. OFM
energies are better than CFM energies, as expected.
In the case of the C2H2···HCN system (Table 7, Figure 2b),

the inclusion of DMA quadrupoles is fundamental and octopoles
still have a significant effect at the smallest intermolecular
separation. The increased importance of higher rank moments
is the consequence of the lower polarity of the molecules
considered. A set of fitted charges and dipoles seems to
approximate the energies of a DMA up to octopoles. Multipole-
fitted charges underestimate the interaction energy. The energies
obtained from ESP charges are better than those from multipole-
fitted charges but worse than those of the multipole-fitted
charge+dipole set.
In the C6H6···NH3 system, one of H-N vectors is orthogonal

to the benzene plane and points toward the center of the benzene
ring (Figure 2c). The DMA interaction energy (Table 8)
exhibits very poor convergence. Interestingly, fitted charges
plus dipoles yield interaction energies near to the converged
values, but taking into account the oscillatory nature of the DMA
energies; this very good result may be fortuitous. OFM and
CFM energies are very similar, while ESP charges give
interaction energies far too negative.
In all three examples above, the relative error between

energies obtained with different rank moments does not change
significantly as the intermolecular separation increases. Nev-
ertheless, the magnitude of the interaction energy and thus the
magnitude of the difference between energies of different rank
moments decrease with increasing separation. Considering the
relative error in the energy, the importance of using fitted
charges and dipoles rather than fitted charges alone is more
pronounced and extends to larger intermolecular separations in
the case of the less polar C2H2···HCN and C6H6···NH3 systems.
In the third type of calculation, the minimum energy

configurations of the HF dimer and the H2O···HCl system were
optimized using the Buckingham-Fowler model.2 This in-
volved using multipoles of different source and rank with the
following hard-sphere radii: H) 0.0 Å, F) 1.35 Å, O) 1.4
Å, Cl ) 1.8 Å. The geometry of the HF dimer (Table 9, Figure
1), as obtained with a DMA up to quadrupoles, is close to that
of ref 2. On the other hand, when electrostatics is represented
by fitted charges (either multipole-fitted or ESP), then the energy
is minimal at a linear arrangement of the molecules. Using
fitted charges plus dipoles (either OFM or CFM) yields an
energy and geometry similar to that obtained with a DMA up
to quadrupoles.
The interaction energy of the H2O···HCl system was calculated

at the geometry shown in Figure 3. (The HCl molecule was
placed in the plane orthogonal to that of the water molecule.)
The energy converges slowly with increasing multipole rank at
the geometry corresponding to the minimum energy of DMA
octopoles (Table 10). The minimum energy configuration and
energy of DMA quadrupoles are somewhat different from those
of DMA octopoles (Table 11). Fitted charges (both multipole-
fitted and ESP) give qualitatively poor minimum energy
geometries. The geometry of the minimum energy configuration
obtained with OFM charges and dipoles (θ1 ) 20°, θ2 ) 178°)
is better but still deviates from that of a DMA up to octopoles
(θ1 ) 37°, θ2 ) 175°). With the inclusion of fitted quadrupoles,
the minimum energy geometry is well reproduced (θ1 ) 37°,

Figure 2. Schematic structures and the interaction energies of (a) an
antiparallel HF dimer, (b) C2H2···HCN, and (c) C6H6···NH3 as a function
of the intermolecular separation calculated with various multipole sets.
0 represents points calculated with DMAmultipoles, * represents points
calculated with fitted multipoles,+ represents points calculated with
CFMs, andO represents points calculated using ESP charges. Distances
are in atomic units.
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θ2 ) 178°). On the interaction energy surface of CFM
charges+dipoles, the absolute minimum corresponds to the
planar arrangement of the atoms. There are also two sym-
metrical local minima on the surface (θ1 ) 18°, θ2 ) 178°).
Their energy is close to that of the global minimum. The
inclusion of CFM quadrupoles results in a notable change in
energy and predicts the off-planar arrangement (θ1 ) 19°, θ2
) 178°) to be the energetically preferred one. This is in
qualitative agreement with the results of DMA quadrupoles and
octopoles. The difficulty in the description of the electrostatic
and interaction energy surface of the H2O···HCl dimer stems
from the flatness of the surface and from the slow convergence
of the interaction energy with increasing multipole rank (see
Table 10). (During a molecular dynamics or Monte Carlo
simulation at 298 K these effects may not be significant as all
the very low energy structures will be sampled with a similar
probability.)
The results presented confirm the widely held view7,8 that a

DMA, at least up to quadrupoles, is needed for calculating
electrostatic interaction energies near the equilibrium geometry
of interacting molecules. For some systems at smaller inter-
molecular separations, even higher rank moments may represent
a marked improvement. However, the most significant result
to emerge here is that fitted charges and dipole moments can
effectively replace a DMA up to quadrupoles or even to
octopoles.
As shown in the figures, the error incurred by using only

fitted charges can be as high as 8 kJ mol-1. This is comparable
to the errors that can arise by neglecting the polarization
energy.12 Consequently, any improvements in electrostatics
ought to be accompanied by corresponding improvements in
the treatment of polarization. The strategy outlined here for
deriving fitted charges and dipoles provides an ideal self-
consistent framework for this because polarization is usually
implemented through induced dipoles. Some of the issues that
may arise in extending this work to include polarization were
discussed in the provious article.12 We also note that an
improved electrostatic and polarization model has to take
account of the variation of the atomic multipole set with
conformation,25,27 since ignoring this can easily give rise to
errors to 9 kJ/mol or more in the free energy of hydration.25,26

Calculations on the â-Adrenergic Model Systems. The
overall interaction energies of epinephrine and norepinephrine

(Figure 4) with theâ-adrenergic receptors are reported in Table
12. Since these are gas phase calculations evaluated using a
dielectric constant of 1.0, the calculated energies bear no
resemblance to the experimental ligand binding affinities.
However, they clearly show that charges plus dipoles generally
reproduce the interaction energy evaluated using a DMA up to
hexadecapoles. They also show that OFMs give better quantita-
tive agreement than CFMs, while charges alone may give errors
in the region of 50 kJ mol-1. The results show that charges
(or charges plus dipoles) evaluated usingr incl ) 2.0 Å so that
more fitting sites are included12 generally give very slightly
superior results to those evaluated usingr incl ) 0.0 Å. However,
since the difference in accuracy is minimal compared to the
effect of including higher rank multipoles, we conclude that
generally the number of fitting sites should be restricted through
the use ofr incl ) 0.0 Å; the additional benefits arising from the
use ofr incl ) 0.0 Å are discussed elsewhere.12

It is believed that311Leu may play an important role in
determining subtype specificity in theâ-AR receptors. Theâ2
andâ3 receptors which contain Leu at position 311 have a higher
affinity for epinephrine, while theâ1 receptors which contain
Phe at position 311 have a higher affinity for norepinephrine.
Molecular modeling studies23 suggest that the change from Leu
in theâ2 andâ3 receptor to Phe inâ1 receptor favors the smaller
norepinephrine on steric grounds. In addition, the studies
suggest that the-NH3

+ group of norepinephrine will make
better interactions with theπ system30 of the Phe (cf. Figure
2c) than with theσ-bonded Leu, while the additional methyl
group of epinephrine will make better hydrophobic contacts with
the hydrophobic leucine side chain. (There are other differences
between theâ1-, â2-, andâ3-ARs, but the residues concerned
probably do not interact directly with the ligand; it is also
important to note that the primary interaction of the charged
quaternary nitrogen atom on the agonist is with113Asp.) Thus,
in order to assess whether this hypothesis has any energetic
basis, we have analyzed the interaction energy between the
ligand and the residue at position 311. The results are reported
in Table 13. The DMA hexadecapole interaction energies
confirm that norepinephrine forms a stronger interaction with
the Phe than with the Leu, while epinephrine forms a stronger
interaction with the Leu than with the Phe. The OFM results
are in good quantitative agreement with this (the CFM results
are almost as good as the OFM results). The use of atomic
charges however would lead one to conclude that epinephrine
makes a stronger interaction with the Phe than does nor-
epinephrine. Thus the use of atomic charges in this problem
could lead to a qualitatively incorrect conclusion, while the use
of effective multipoles would lead to the correct conclusion.
The norepinephrine-Phe interaction is similar to the benzene-
ammonia interaction; as Figure 2c shows, such interactions
involving nonpolar systems are not well described by the use
of point charges.
Fitted Multipole Moments for Sample Molecules. In this

section, fitted moments for small molecules are presented. As

Figure 3. Schematic structure and the interactions energies of the
H2O···HCl system atθ1 ) 32° and θ2 ) 178° (minimum energy
geometry of DMA octopoles) as a function of DMA multipole ranks.
0 represents points calculated with DMAmultipoles, * represents points
calculated with fitted multipoles,+ represents points calculated with
CFMs, andO represents points calculated using ESP charges.

Figure 4. Structure of norepinephrine (top) and epinephrine (bottom).
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demonstrated in ref 10 for semiempirical wave functions and
in the previous article12 for ab initio wave functions, fitted
charges (Table 14, CFMQ00) are similar to potential-derived
charges. When a set of charges and dipoles are calculated in
an overall fit, then the charges are significantly different from
those obtained when only charges are fitted (Table 14). The
sign of the charges of a set of fitted charges and dipoles is
usually not against chemical intuition, but the magnitude of the
charges is highly exaggerated in some cases. In C2H2, the fitted
charge is negative on the carbon and positive on the hydrogen
atom,12 but the signs of the charges are inverted when charges
plus dipoles are calculated in an overall fit. This inverted
polarity of the C-H bond is modulated by the large dipoles
appearing on both the carbon and the hydrogen atoms and
pointing toward the negative hydrogens. A similar effect can
be observed in the other molecules; the effect of the change in
the magnitude of the charges caused by fitting both charges
and dipoles rather than charges alone is compensated by the
dipoles. This suggests that a set of charges and dipoles of an
overall fit reflect the deformation of the electron density in a
complex, less transparent way. Because of this, charges will
continue to have many uses in explaining qualitative effects.
In addition, appropriately chosen charges are able to describe
quantitatively the electrostatic interactions of molecules at
medium and large intermolecular separation at a low compu-
tational cost. For all these reasons, CFMs have advantages over
OFMs. In the latter, the moments of all ranks have similar
importance in reproducing the effect of the reference moments.
On the other hand, CFMs are similar to multipole moments
calculated from a multipolar expansion in the sense that the
importance of the moments decreases with increasing rank. This
is the reason why CFMs are chemically reasonable, and an
important consequence is that a series of CFMs can be truncated
when the interaction energy at large intersite separation is
calculated.

Conclusions

It has been demonstrated in the literature that DMAmultipoles
of rank 2-3 are able to describe correctly intermolecular
electrostatic interactions. Moreover, in the framework of the
Buckingham-Fowler2 or related models,3,4 they are able to
predict equilibrium geometries of van der Waals complexes.
The present contribution provides several examples where
multipole-fitted charges are insufficient for the correct descrip-
tion of intermolecular electrostatic interactions of close mol-
ecules. They fail to reproduce the electrostatic interaction
energies calculated with DMA multipoles and predict qualita-
tively poor equilibrium geometries of van der Waals complexes.
More importantly, we have found that a multipole-fitted charge
and dipole set is able to replace DMA multipoles up to
quadrupoles or even octopoles. This is significant because the
use of the lower rank fitted moments in molecular modeling
studies is computationally more economical than the use of
DMA multipoles. Consequently, we propose the following
strategy for the calculation of intermolecular electrostatic
interaction energies with classical force fields. When the
intermolecular separation is smaller than a given limit (say when
the closest atoms are within 4 Å), then a fitted charge and dipole
set is used to evaluate the electrostatic interaction energy. When
the intermolecular separation is larger, then charge sets are
appropriate for the calculation of electrostatics. (The latter
charge set is the same as the charges in the charge+dipole set
if cumulative fitted moments are used; this is a distinct
advantage. On the other hand, when moments from an overall
fitting procedure are used, then the charge+dipole set gives
better interaction energies, but the charges used to evaluate the
interaction energies of distant atoms are different from those in
the charge+dipole set.) With this computational scheme, it is
reasonable to find parameters that are able to reproduce
quantitatively quantum mechanical electrostatic energies. This
scheme may therefore be a significant step toward the separation

TABLE 14: Fitted Momentsa of Some Molecules: All Quantities Are in Atomic Units

coordinates OFMb CFMc
molecule
atom x y z Q00 Q10 Q11c Q11s Q00 Q10 Q11c Q11s

C2H2

H 0.000 0.000 0.000 -0.114 0.000 -0.269 0.000 0.262 0.000 0.041 0.000
C 2.003 0.000 0.000 0.114 0.000 -0.812 0.000 -0.262 0.000 -0.250 0.000
C 4.276 0.000 0.000 0.114 0.000 0.812 0.000-0.262 0.000 0.250 0.000
H 6.279 0.000 0.000 -0.114 0.000 0.269 0.000 0.262 0.000 -0.041 0.000

H2O
H 0.000 0.000 0.000 0.789 0.000 0.214 -0.011 0.397 0.000 -0.114 -0.016
O 1.808 0.000 0.000 -1.578 0.000 0.362 -0.468 -0.794 0.000 0.073 -0.094
H 2.261 1.751 0.000 0.789 0.000 -0.043 -0.210 0.397 0.000 0.044 0.107

HF
F 0.000 0.000 0.000 -0.702 0.000 -0.349 0.000 -0.452 0.000 -0.124 0.000
H 1.733 0.000 0.000 0.702 0.000 -0.088 0.000 0.452 0.000 0.121 0.000

NH3

N 0.000 0.000 0.216 -2.795 0.761 0.000 0.000 -1.069 0.128 0.000 0.007
H 0.000 1.772 -0.504 0.932 0.161 0.000 -0.357 0.356 -0.381 0.000 -0.000
H 1.534 -0.886 -0.504 0.932 0.161 -0.309 0.179 0.356 0.128 0.006 -0.004
H -1.534 -0.886 -0.504 0.932 0.161 0.309 0.179 0.356 0.128-0.006 -0.004

HCN
H 0.000 0.000 0.000 0.049 0.000 -0.199 0.000 0.159 0.000 -0.097 0.000
C 2.009 0.000 0.000 0.072 0.000 -0.431 0.000 0.277 0.000 0.027 0.000
N 4.190 0.000 0.000 -0.121 0.000 -0.279 0.000 -0.437 0.000 0.071 0.000

CH3CHO
C 3.880 2.354 0.000 0.449 0.000 0.144 0.114-0.161 0.000 -0.045 -0.070
H 2.619 3.992 0.000 -0.118 0.000 -0.143 0.148 0.056 0.000 -0.043 0.065
H 5.059 2.352 1.698 -0.155 0.189 0.113 -0.004 0.046 0.057 0.040 0.018
H 5.059 2.352 -1.698 -0.155 -0.189 0.113 -0.004 0.046 -0.057 0.040 0.018
C 2.298 0.000 0.000 0.543 0.000 -0.226 0.269 0.659 0.000 0.023 0.074
H 3.306 -1.848 0.000 0.099 0.000 -0.045 0.011 -0.082 0.000 0.027 -0.129
O 0.000 0.000 0.000 -0.661 0.000 -0.176 -0.042 -0.565 0.000 -0.063 -0.023

aMultipole moments are labeled according to ref 28.bMultipole moments are calculated from an overall fitting procedure.cMultipole moments
are calculated from a cumulative fitting procedure.

Toward Improved Force Fields J. Phys. Chem. A, Vol. 101, No. 30, 19975453



of the energy components obtained with classical force fields.
It therefore offers many advantages both in the development of
force fields and in the interpretation of the results calculated
with the force fields. A particularly important benefit of this
scheme is that it allows polarization and electrostatics to be
handled on an equal footing, since polarization is usually
included through interactions involving induced dipoles.
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Appendix

The derivation of the equations to calculate fitted multipole
moments that reproduce the effect of a reference multipole series
is presented below.
The interaction energy (V) between two series of point

multipoles is28

where Q̂ is a complex multipole moment,Î(RB) is a complex
irregular solid harmonic defined as in ref 28,mj ) -m, and

Defining real multipole moments28 as

with

and real irregular solid harmonicsIlmc and Ilms similarly, eq 1
can be written with real quantities as

wherep can take two values,+1 and-1, the former corre-
sponding to thec index and the latter corresponding to thes
index in eq 3. Whenm ) 0, then onlyp ) 1 is allowed.
min(pA,pB) stands for the smaller ofpA andpB. m runs from
-l to +l.
Now, let us suppose that we have a multipole series atRBM

and we want to reproduce its effect by several series of
multipoles atRBJ, J ) 1, 2, .... It is expected that the effect of
a multipole series up to rankNM atRBM can be well approximated
by several multipole series up to rankNJ at RBJ, J ) 1, 2, ...,
with NJ < NM. To determine the multipoles atRBJ, J ) 1, 2, ...,
we require, on the basis of eq 4, that

be a minimum. The integration in eq 5 is taken over a spherical
shell centered atRBM. The selection of such a domain for the
integration makes it possible to exploit the orthogonality of the
spherical harmonics (see below).clt is introduced to increase
the flexibility of the method. In general,clt ) 1 is a reasonable
choice. TheR andF upper indices of the multipole moments
refer to reference moments and fitted moments, respectively.
Them index runs from-l to +l. TheQlmp andQlmjpmultipole
moments are not independent, and this will be exploited toward
the end of the derivation.
The expressions appearing between square brackets in eq 5

are the interaction energies of a unit multipole moment atRBT

with the set of multipoles atRBM (sums overlM, mM, andpM)
and with the sets of multipoles atRBJ (sums overJ, lJ, mJ, and
pJ). This becomes more transparent after making use of the
addition theorem of irregular solid harmonics29 adapted for the
real case

whereRl2m2p2(RB1) is a regular solid harmonic, and invoking the
orthogonality of spherical harmonics

if l1 ) l2, m1 ) m2, p1 ) p2 or l1 ) l2, m1 ) -m2, p1 ) p2.
Then eq 5 can be written, after some algebraic manipulations,
as

The new symbols appearing in eq 8 are defined as

and

V)

∑
lA,mA

∑
lB,mB

TlAlBmAmB
Q̂lAmA

(RBA) Q̂lBmB
(RBB) Î lA+lB,mjA+mjB

(RBA - RBB)

(1)

TlAlBmAmB
)

(-1)lB+mA+mB[(lA+lB+mA+mB

lA+mA
)(lA+lB-mA-mB

lA-mA
)]1/2 (2)

Qlmc ) bmQlm + bmjQlmj , iQlms) bmQlm - bmjQlmj (3)

bm ) (-1)mx1/2, m> 0

) 1/2, m) 0

) x1/2, m< 0

V) ∑
lA,mA,pA

∑
lB,mB,pB

TlAlBmAmB
QlAmApA

(RBA) QlBmBpB
(RBB) ×

IlA+lB,mjA+mjB,pApB
(RBA - RBB)(8bmA

bmB
bmjA+mjB

)-1 min(pA,pB) (4)

∫dVT ∑
lt,mt,pt

clt [ ∑
lM,mM,pM

QlMmMpM

R (RBM)TlMltmMmt
×

(8bmM
bmt
bmjM+mj t

)-1 min(pM,pt) IlM+lt,mjM+mj t,pMpt
(RBM - RBT) -

∑
J

∑
lJ,mJ,pJ

QlJmJpJ

F (RBJ)TlJltmJmt
×

(8bmJ
bmt
bmj J+mj t)

-1 min(pJ,pt) IlJ+lt,mj J+mj t,pJpt(RBJ - RBT)]
2 (5)

Il1m1p1
(RB1 + RB2) )

∑
l2m2p2

(-1)m1Tl1l2m1m2

bm1

2bm2
bm1+mj 2

Rl2m2p2
(RB1) ×

Il1+l2,m1+mj 2,p1p2
(RB2) max(p2 - p1) |RB1| < |RB2| (6)

∫dVT Il1m1p1
(RBT) Il2m2p2

(RBT) * 0 (7)

∑
lt,mt,pt

clt ∑
lM,mM,m′M,pM

WlMltmMm′MmtpMpt
(r1,r2) × (QlMmMpM

R (RBM) -

∑
J

∑
lJ,mJ,pJ

PlMlJmMmJpMpJ
(RBJ - RBM) QlJmJpJ

F (RBJ)) ×

(QlMm′MpM
R (RBM) - ∑

J
∑

lJ,mJ,pJ

PlMlJm′MmJpMpJ
(RBJ - RBM) QlJmJpJ

F (RBJ))

(8)

PlMlJmMmJpMpJ
(RBJ - RBM) ) (-1)lJ+mMTlM-lJ,lJ,mM-mJ,mJ

×
bmM

2bmM-mJ
bmJ

RlM-lJ,mM-mJ,pMpJ
(RBJ - RBM)max(-pM,pJ)

WlMltmMm′MmtpMpt
(r1,r2) ) TlMltmMmt

TlMltm′Mmt
×

(64bmM
bmt
bmjM+mj t

bm′M
bmt
bmj ′M+mj t

)-1×
[δmM,m′M

+ δ2mt,mjM+mj ′M
(1- δmM+mt,0

)pMpt] ×
4Π

[2(lM + lt) + 1][2(lM + lt) - 1]
(r1
1-2lM-2lt - r2

1-2lM-2lt)
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wherer1 and r2 are the radii of a smaller and a larger sphere,
respectively, and they define the spherical shell of the integration
(r1 and r2 are related torlow and rhigh in ref 12).
A multipole moment atRBM can be expressed by a set of

moments atRBJ.28

Thus in the second and third row of eq 8 differences between
reference multipole moments atRBM and those created by fitted
multipoles ofRBJ at RBM appear.
SinceQlmp ) pQlmjp, eq 8 can be further manipulated to

include sums over only nonnegativemt,mM,m′M, andmj. Then
taking the derivative of the equation with respect toQlNmNpN

F

(RBN) and equating the derivative with zero result in the
following equation:

In this equationmt, mM, m′M, andmJ can take only non-
negative values. Note thatm′M runs from 0 tolM, but due to
the restriction imposed by eq 7, one of the following equations
has to hold form′M.

W̃lMltmMmtm′M and P̃lMlJmMmJpMpJ(RBJ - RBM) are defined as

and

Then theQlJmJpJ

F (RBJ)’s can be calculated from a linear equation
system defined by eq 10.

Supporting Information Available: Equilibrium geometries
of the HF and H2O dimers (1 page). Ordering information is
given on any current masthead page.
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